Problèmes de Satisfaction de Contraintes

Cyril Terrioux

Laboratoire des Sciences de l'Information et des Systèmes

LSIS - UMR CNRS 6168

Plan

- 1. Introduction
- 2. Le formalisme CSP
- 3. Méthodes de résolution énumératives

Plan

- 1. Introduction
- 2. Le formalisme CSP
- 3. Méthodes de résolution énumératives

Comment modéliser un problème ?

- analyser le problème :
 - identifier les différents objets composant le problème
 - identifier les propriétés de ces objets
 - identifier les relations entre ces objets
- représenter ces informations dans un formalisme donné

Comment modéliser un problème ?

- analyser le problème :
 - identifier les différents objets composant le problème
 - identifier les propriétés de ces objets
 - identifier les relations entre ces objets
- représenter ces informations dans un formalisme donné

Formalisme CSP:

■ Objets → variables

Comment modéliser un problème ?

- analyser le problème :
 - identifier les différents objets composant le problème
 - identifier les propriétés de ces objets
 - identifier les relations entre ces objets
- représenter ces informations dans un formalisme donné

Formalisme CSP:

- Objets → variables
- Propriétés et relations → contraintes

■ Domaines quelconques (N, R, ...)

- Domaines quelconques $(\mathbb{N}, \mathbb{R}, \dots)$
- Des contraintes de types très variés

- Domaines quelconques $(\mathbb{N}, \mathbb{R}, \dots)$
- Des contraintes de types très variés

Exemples de problèmes :

coloration de graphes,

- Domaines quelconques $(\mathbb{N}, \mathbb{R}, \dots)$
- Des contraintes de types très variés

- coloration de graphes,
- logique propositionnelle,

- Domaines quelconques $(\mathbb{N}, \mathbb{R}, \dots)$
- Des contraintes de types très variés

- coloration de graphes,
- logique propositionnelle,
- vérification de circuits,

- Domaines quelconques (N, R, ...)
- Des contraintes de types très variés

- coloration de graphes,
- logique propositionnelle,
- vérification de circuits,
- systèmes d'équations ou d'inéquations,

- Domaines quelconques (N, R, ...)
- Des contraintes de types très variés

- coloration de graphes,
- logique propositionnelle,
- vérification de circuits,
- systèmes d'équations ou d'inéquations,
- . . .

Plan

- 1. Introduction
- 2. Le formalisme CSP
- 3. Méthodes de résolution énumératives

Problème de satisfaction de contraintes (CSP)

Instance $\mathcal{P} = (X, D, C, R)$ avec :

- ullet X un ensemble de n variables,
- D un ensemble de domaines finis de taille au plus d,
- C un ensemble de m contraintes,
- R un ensemble de relations de compatibilité.

Contrainte = un sous-ensemble de variables

Contrainte = un sous-ensemble de variables

Arité = nombre de variables soumises à la contrainte

Contrainte = un sous-ensemble de variables

Arité = nombre de variables soumises à la contrainte

Contrainte unaire = une contrainte portant sur une seule variable

Contrainte = un sous-ensemble de variables

Arité = nombre de variables soumises à la contrainte

Contrainte unaire = une contrainte portant sur une seule variable

Contrainte binaire = une contrainte portant sur deux variables

Contrainte = un sous-ensemble de variables

Arité = nombre de variables soumises à la contrainte

Contrainte unaire = une contrainte portant sur une seule variable

Contrainte binaire = une contrainte portant sur deux variables

Contrainte n-aire = une contrainte portant sur plus de deux variables

CSP binaire = CSP dont toutes les contraintes sont unaires ou binaires

CSP binaire = CSP dont toutes les contraintes sont unaires ou binaires

CSP n-aire = CSP dont au moins une contrainte est n-aire

CSP binaire = CSP dont toutes les contraintes sont unaires ou binaires

CSP n-aire = CSP dont au moins une contrainte est n-aire

Il existe une transformation polynomiale qui permet de passer d'un CSP n-aire à CSP binaire

CSP binaire = CSP dont toutes les contraintes sont unaires ou binaires

CSP n-aire = CSP dont au moins une contrainte est n-aire

Il existe une transformation polynomiale qui permet de passer d'un CSP n-aire à CSP binaire

⇒ on va se focaliser sur les CSP binaires

CSP binaire = CSP dont toutes les contraintes sont unaires ou binaires

CSP n-aire = CSP dont au moins une contrainte est n-aire

Il existe une transformation polynomiale qui permet de passer d'un CSP n-aire à CSP binaire

⇒ on va se focaliser sur les CSP binaires

Attention, le problème reste aussi difficile!

Graphe de contraintes

Une représentation de la structure du problème

Graphe de contraintes

Une représentation de la structure du problème

Graphe de contraintes (X, C):

- sommets = les variables
- arêtes = les contraintes

Relation r_i = ensemble des tuples autorisés par la contrainte c_i

Relation r_i = ensemble des tuples autorisés par la contrainte c_i

Relation r_i = sous-ensemble du produit cartésien $\prod_{x \in c_i} d_x$

Relation r_i = ensemble des tuples autorisés par la contrainte c_i

Relation r_i = sous-ensemble du produit cartésien $\prod_{x \in c_i} d_x$

Relation en extension : liste de tous les tuples interdits ou autorisés

Relation r_i = ensemble des tuples autorisés par la contrainte c_i

Relation r_i = sous-ensemble du produit cartésien $\prod_{x \in c_i} d_x$

Relation en extension : liste de tous les tuples interdits ou autorisés

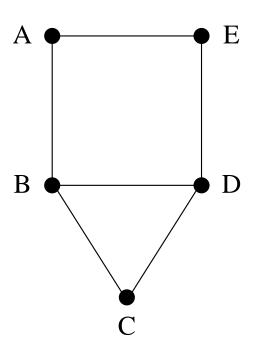
Relation en intention : équations, inéquations, ...

Le pouvoir d'expression des contraintes

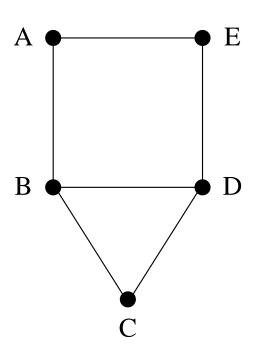
Diversité de la nature des contraintes :

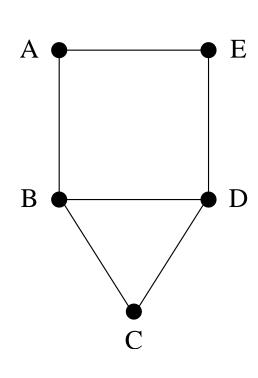
- contraintes impliquant un nombre quelconque de variables,
- énumérations des affectations compatibles ou interdites,
- équations, inéquations,
- prédicats,

9 . . .



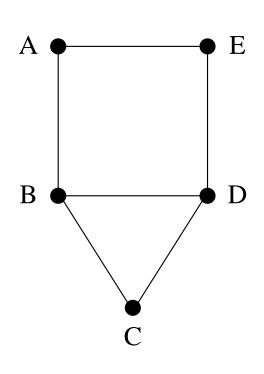
•
$$X = \{A, B, C, D, E\}$$





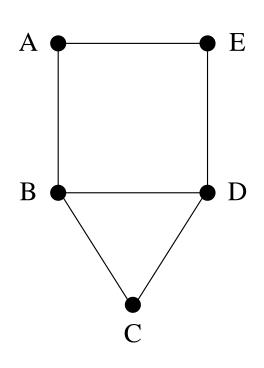
•
$$X = \{A, B, C, D, E\}$$

•
$$D = \{d_A, d_B, d_C, d_D, d_E\}$$
 avec $d_A = d_B = d_C = d_D = d_E = \{v, j, r\}$



- $X = \{A, B, C, D, E\}$
- $D = \{d_A, d_B, d_C, d_D, d_E\}$ avec $d_A = d_B = d_C = d_D = d_E = \{v, j, r\}$
- $C = \{c_{AB}, c_{BC}, c_{BD}, c_{CD}, c_{DE}, c_{AE}\}$ avec $c_{AB} = \{A, B\}, c_{BC} = \{B, C\}, \dots$

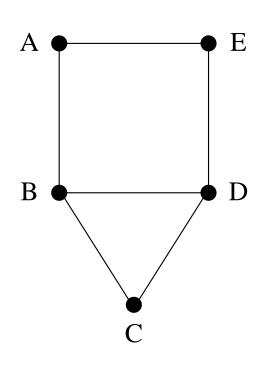
Coloration de graphe avec 3 couleurs (vert, jaune, rouge)



•
$$X = \{A, B, C, D, E\}$$

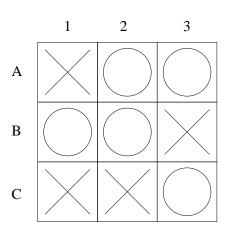
- $D = \{d_A, d_B, d_C, d_D, d_E\}$ avec $d_A = d_B = d_C = d_D = d_E = \{v, j, r\}$
- $C = \{c_{AB}, c_{BC}, c_{BD}, c_{CD}, c_{DE}, c_{AE}\}$ avec $c_{AB} = \{A, B\}, c_{BC} = \{B, C\}, \dots$
- $R = \{r_{AB}, r_{BC}, r_{BD}, r_{CD}, r_{DE}, r_{AE}\}$ avec $r_{AB} = \{(a,b) | a \in d_A, b \in d_B, a \neq b\}$,

Coloration de graphe avec 3 couleurs (vert, jaune, rouge)

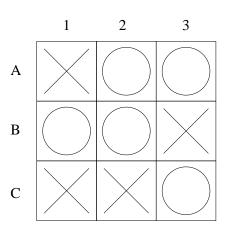


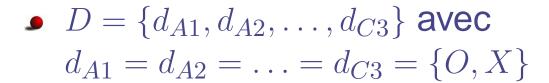
•
$$X = \{A, B, C, D, E\}$$

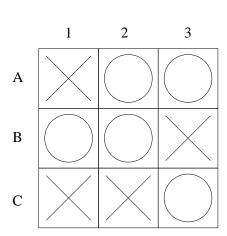
- $D = \{d_A, d_B, d_C, d_D, d_E\}$ avec $d_A = d_B = d_C = d_D = d_E = \{v, j, r\}$
- $C = \{c_{AB}, c_{BC}, c_{BD}, c_{CD}, c_{DE}, c_{AE}\}$ avec $c_{AB} = \{A, B\}, c_{BC} = \{B, C\}, \dots$
- $R = \{r_{AB}, r_{BC}, r_{BD}, r_{CD}, r_{DE}, r_{AE}\}$ • avec $r_{AB} = \{(a,b)|a \in d_A, b \in d_B, a \neq b\}$, • $r_{BC} = \{(v,j), (v,r), (j,v), (j,r), (r,v), (r,j)\}$,

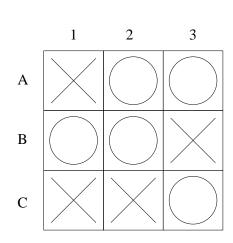


 \bullet $X = \{A1, A2, A3, B1, B2, B3, C1, C2, C3\}$



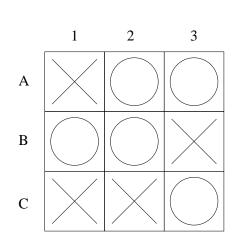




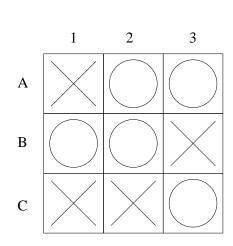


$$\bullet$$
 $X = \{A1, A2, A3, B1, B2, B3, C1, C2, C3\}$

- $D = \{d_{A1}, d_{A2}, \dots, d_{C3}\}$ avec $d_{A1} = d_{A2} = \dots = d_{C3} = \{O, X\}$
- $C=\{c_A,c_B,c_C,c_1,c_2,c_3,c_{d1},c_{d2},c_{all}\}$ • avec $c_A=\{A1,A2,A3\}$, $c_1=\{A1,B1,C1\}$, $c_{d1}=\{A1,B2,C3\}$, $c_{all}=X$



- \bullet $X = \{A1, A2, A3, B1, B2, B3, C1, C2, C3\}$
- $D = \{d_{A1}, d_{A2}, \dots, d_{C3}\}$ avec $d_{A1} = d_{A2} = \dots = d_{C3} = \{O, X\}$
- $C=\{c_A,c_B,c_C,c_1,c_2,c_3,c_{d1},c_{d2},c_{all}\}$ avec $c_A=\{A1,A2,A3\}$, $c_1=\{A1,B1,C1\}$, $c_{d1}=\{A1,B2,C3\}$, $c_{all}=X$
- $R = \{r_A, r_B, r_C, r_1, r_2, r_3, r_{d1}, r_{d2}, r_{all}\}$ avec $r_A = \{(O, O, X), (O, X, O), (X, O, O), (O, X, X), (X, X, X), (X, X, X), (X, X, X, X)\},$



- \bullet $X = \{A1, A2, A3, B1, B2, B3, C1, C2, C3\}$
- $D = \{d_{A1}, d_{A2}, \dots, d_{C3}\}$ avec $d_{A1} = d_{A2} = \dots = d_{C3} = \{O, X\}$
- $C=\{c_A,c_B,c_C,c_1,c_2,c_3,c_{d1},c_{d2},c_{all}\}$ avec $c_A=\{A1,A2,A3\}$, $c_1=\{A1,B1,C1\}$, $c_{d1}=\{A1,B2,C3\}$, $c_{all}=X$
- $R = \{r_A, r_B, r_C, r_1, r_2, r_3, r_{d1}, r_{d2}, r_{all}\}$ avec $r_A = \{(O, O, X), (O, X, O), (X, O, O), (O, X, X), (X, O, X), (X, X, O)\},$ $c_{all} = \{"la \ grille \ contient \ 5 \ ronds \ et \ 4 \ croix"\}$

$$\begin{cases} x_1 < x_2 \\ x_1 < x_3 \\ x_1 < x_4 \\ x_1 < x_5 \\ x_3^2 < x_6 \\ x_4 > x_6 \\ x_5 \in \{1, 2\} \\ x_i \in \{1, 2, 3\}, i \neq 5 \end{cases}$$

$$\begin{cases} x_1 < x_2 \\ x_1 < x_3 \\ x_1 < x_4 \\ x_1 < x_5 \\ x_3^2 < x_6 \\ x_4 > x_6 \\ x_5 \in \{1, 2\} \\ x_i \in \{1, 2, 3\}, i \neq 5 \end{cases}$$

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$\begin{cases} x_1 < x_2 \\ x_1 < x_3 \\ x_1 < x_4 \\ x_1 < x_5 \\ x_3^2 < x_6 \\ x_4 > x_6 \\ x_5 \in \{1, 2\} \\ x_i \in \{1, 2, 3\}, i \neq 5 \end{cases}$$

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

 $D = \{d_{x_1}, d_{x_2}, d_{x_3}, d_{x_4}, d_{x_5}, d_{x_6}\}$ avec $d_{x_i} = \{1, 2, 3\} \ i \neq 5$, $d_{x_5} = \{1, 2\}$

$$\begin{cases} x_1 < x_2 \\ x_1 < x_3 \\ x_1 < x_4 \\ x_1 < x_5 \\ x_3^2 < x_6 \\ x_4 > x_6 \\ x_5 \in \{1, 2\} \\ x_i \in \{1, 2, 3\}, i \neq 5 \end{cases}$$

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

- $D = \{d_{x_1}, d_{x_2}, d_{x_3}, d_{x_4}, d_{x_5}, d_{x_6}\}$ avec $d_{x_i} = \{1, 2, 3\} \ i \neq 5, d_{x_5} = \{1, 2\}$
- $C = \{c_{12}, c_{13}, c_{14}, c_{15}, c_{36}, c_{46}\}$ avec $c_{ij} = \{x_i, x_j\}$

$$\begin{cases} x_1 < x_2 \\ x_1 < x_3 \\ x_1 < x_4 \\ x_1 < x_5 \\ x_3^2 < x_6 \\ x_4 > x_6 \\ x_5 \in \{1, 2\} \\ x_i \in \{1, 2, 3\}, i \neq 5 \end{cases}$$

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$D = \{d_{x_1}, d_{x_2}, d_{x_3}, d_{x_4}, d_{x_5}, d_{x_6}\}$$
 avec $d_{x_i} = \{1, 2, 3\} \ i \neq 5, d_{x_5} = \{1, 2\}$

•
$$C = \{c_{12}, c_{13}, c_{14}, c_{15}, c_{36}, c_{46}\}$$

avec $c_{ij} = \{x_i, x_j\}$

•
$$R = \{r_{12}, r_{13}, r_{14}, r_{15}, r_{36}, r_{46}\}$$
 avec $r_{36} = \{x_3^2 < x_6\}, r_{46} = \{x_4 > x_6\}$

$$\begin{cases} x_1 < x_2 \\ x_1 < x_3 \\ x_1 < x_4 \\ x_1 < x_5 \\ x_3^2 < x_6 \\ x_4 > x_6 \\ x_5 \in \{1, 2\} \\ x_i \in \{1, 2, 3\}, i \neq 5 \end{cases}$$

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

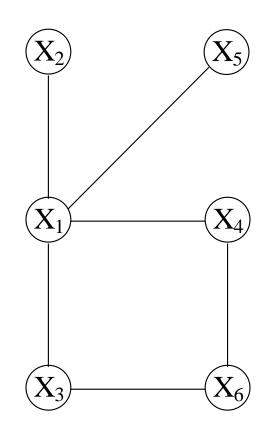
$$D = \{d_{x_1}, d_{x_2}, d_{x_3}, d_{x_4}, d_{x_5}, d_{x_6}\}$$
 avec $d_{x_i} = \{1, 2, 3\} \ i \neq 5, d_{x_5} = \{1, 2\}$

•
$$C = \{c_{12}, c_{13}, c_{14}, c_{15}, c_{36}, c_{46}\}$$

avec $c_{ij} = \{x_i, x_j\}$

•
$$R = \{r_{12}, r_{13}, r_{14}, r_{15}, r_{36}, r_{46}\}$$
 avec $r_{36} = \{x_3^2 < x_6\}, r_{46} = \{x_4 > x_6\}$ $r_{ij} = \{x_i < x_j\}$

$$\begin{cases} x_1 < x_2 \\ x_1 < x_3 \\ x_1 < x_4 \\ x_1 < x_5 \\ x_3^2 < x_6 \\ x_4 > x_6 \\ x_5 \in \{1, 2\} \\ x_i \in \{1, 2, 3\}, i \neq 5 \end{cases}$$



Instanciation des variables de $Y = \{y_1, \dots, y_k\} = k$ -uplet (v_1, \dots, v_k) de $d_{y_1} \times \dots \times d_{y_k}$.

Instanciation des variables de $Y = \{y_1, \dots, y_k\} = k$ -uplet (v_1, \dots, v_k) de $d_{y_1} \times \dots \times d_{y_k}$.

Instanciation complète = instanciation de toutes les variables

Instanciation des variables de $Y = \{y_1, \dots, y_k\} = k$ -uplet (v_1, \dots, v_k) de $d_{y_1} \times \dots \times d_{y_k}$.

Instanciation complète = instanciation de toutes les variables

Instanciation partielle = instanciation d'une partie des variables

Instanciation des variables de $Y = \{y_1, \dots, y_k\} = k$ -uplet (v_1, \dots, v_k) de $d_{y_1} \times \dots \times d_{y_k}$.

Instanciation complète = instanciation de toutes les variables

Instanciation partielle = instanciation d'une partie des variables

Notation : $\{x_1 \leftarrow a, x_2 \leftarrow c\}$

Une affectation \mathcal{A} de $Y=\{y_1,\ldots,y_k\}$ satisfait une contrainte c si $\mathcal{A}[c]\in r_c$.

 \mathcal{A} viole c sinon.

Une affectation \mathcal{A} de $Y=\{y_1,\ldots,y_k\}$ satisfait une contrainte c si $\mathcal{A}[c]\in r_c$.

 \mathcal{A} viole c sinon.

Instanciation **consistante** = instanciation qui satisfait toutes les contraintes c telles que $c \subseteq Y$

Une affectation \mathcal{A} de $Y=\{y_1,\ldots,y_k\}$ satisfait une contrainte c si $\mathcal{A}[c]\in r_c$.

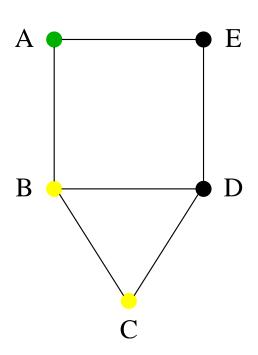
 \mathcal{A} viole c sinon.

Instanciation **consistante** = instanciation qui satisfait toutes les contraintes c telles que $c \subseteq Y$

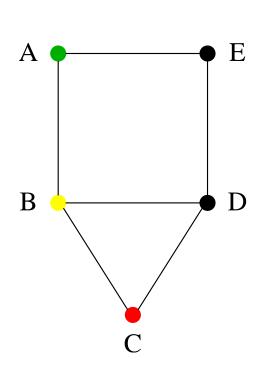
Instanciation inconsistante = instanciation qui viole au moins une contrainte c telle que $c \subseteq Y$

Coloration de graphe avec 3 couleurs (vert, jaune, rouge)

•
$$\{A \leftarrow v, B \leftarrow j, C \leftarrow j\}$$
 viole c_{BC}



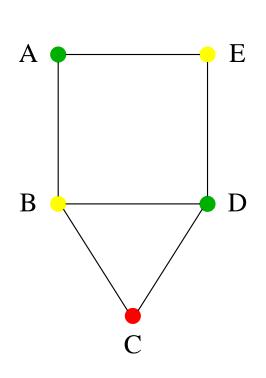
Coloration de graphe avec 3 couleurs (vert, jaune, rouge)



•
$$\{A \leftarrow v, B \leftarrow j, C \leftarrow j\}$$
 viole c_{BC}

• $\{A \leftarrow v, B \leftarrow j, C \leftarrow r\}$ est consistante

Coloration de graphe avec 3 couleurs (vert, jaune, rouge)



- $\{A \leftarrow v, B \leftarrow j, C \leftarrow j\}$ viole c_{BC}
- $\{A \leftarrow v, B \leftarrow j, C \leftarrow r\}$ est consistante
- $\{A \leftarrow v, B \leftarrow j, C \leftarrow r, D \leftarrow v, E \leftarrow j\}$ est une affectation complète consistante

Solution

Solution = affectation complète consistante

Solution

Solution = affectation complète consistante

Problème **consistant** = problème possédant au moins une solution

Solution

Solution = affectation complète consistante

Problème **consistant** = problème possédant au moins une solution

Problème **inconsistant** = problème ne possédant aucune solution

Les deux premiers problèmes sont consistants

Par exemple, $\{A \leftarrow v, B \leftarrow j, C \leftarrow r, D \leftarrow v, E \leftarrow j\}$ est une solution du problème de coloration.

Les deux premiers problèmes sont consistants

Par exemple, $\{A \leftarrow v, B \leftarrow j, C \leftarrow r, D \leftarrow v, E \leftarrow j\}$ est une solution du problème de coloration.

Le troisième problème est inconsistant.

• Une instance possède-t-elle une solution ?

- Une instance possède-t-elle une solution ?
- Trouver une solution d'une instance.

- Une instance possède-t-elle une solution ?
- Trouver une solution d'une instance.
- Trouver toutes les solutions d'une instance.

- Une instance possède-t-elle une solution ?
- Trouver une solution d'une instance.
- Trouver toutes les solutions d'une instance.
- Trouver le nombre de solutions d'une instance.

- Une instance possède-t-elle une solution ?
- Trouver une solution d'une instance.
- Trouver toutes les solutions d'une instance.
- Trouver le nombre de solutions d'une instance.
- Trouver la meilleure solution d'une instance.

- Une instance possède-t-elle une solution ?
- Trouver une solution d'une instance.
- Trouver toutes les solutions d'une instance.
- Trouver le nombre de solutions d'une instance.
- Trouver la meilleure solution d'une instance.

9 . . .

Problèmes posés

- Une instance possède-t-elle une solution ?
- Trouver une solution d'une instance.
- Trouver toutes les solutions d'une instance.
- Trouver le nombre de solutions d'une instance.
- Trouver la meilleure solution d'une instance.

9 . . .

Taille de l'espace de recherche : d^n

Méthodes de résolution

Les méthodes complètes

Méthodes de résolution

- Les méthodes complètes
 - Les méthodes énumératives
 - Les méthodes structurelles

Méthodes de résolution

- Les méthodes complètes
 - Les méthodes énumératives
 - Les méthodes structurelles
- Les méthodes incomplètes

Plan

- 1. Introduction
- 2. Le formalisme CSP
- 3. Méthodes de résolution énumératives

Principe:

• on génère une affectation complète,

- on génère une affectation complète,
- on teste s'il s'agit d'une solution,

- on génère une affectation complète,
- on teste s'il s'agit d'une solution,
- on réitère le procédé tant qu'on n'a pas trouvé une solution et qu'on n'a pas essayé toutes les affectations complètes

Principe:

- on génère une affectation complète,
- on teste s'il s'agit d'une solution,
- on réitère le procédé tant qu'on n'a pas trouvé une solution et qu'on n'a pas essayé toutes les affectations complètes

Complexité : $O(md^n)$

Principe:

- on génère une affectation complète,
- on teste s'il s'agit d'une solution,
- on réitère le procédé tant qu'on n'a pas trouvé une solution et qu'on n'a pas essayé toutes les affectations complètes

Complexité : $O(md^n)$

Inefficace en pratique !!!

```
x_1 < x_2
                                  \{x_1 \leftarrow 1, x_2 \leftarrow 1, x_3 \leftarrow 1, x_4 \leftarrow 1, x_5 \leftarrow 1, x_6 \leftarrow 1\}
x_1 < x_3
x_1 < x_4
x_1 < x_5
x_3^2 < x_6
x_4 > x_6
x_5 \in \{1, 2\}
x_i \in \{1, 2, 3\}, i \neq 5
```

```
x_1 < x_2
                                     \{x_1 \leftarrow 1, x_2 \leftarrow 1, x_3 \leftarrow 1, x_4 \leftarrow 1, x_5 \leftarrow 1, x_6 \leftarrow 1\}
 x_1 < x_3
 x_1 < x_4
                                     \{x_1 \leftarrow 1, x_2 \leftarrow 1, x_3 \leftarrow 1, x_4 \leftarrow 1, x_5 \leftarrow 1, x_6 \leftarrow 2\}
x_1 < x_5
x_3^2 < x_6
x_4 > x_6
x_5 \in \{1, 2\}
x_i \in \{1, 2, 3\}, i \neq 5
```

```
x_1 < x_2
                                       \{x_1 \leftarrow 1, x_2 \leftarrow 1, x_3 \leftarrow 1, x_4 \leftarrow 1, x_5 \leftarrow 1, x_6 \leftarrow 1\}
 x_1 < x_3
 x_1 < x_4
                                       \{x_1 \leftarrow 1, x_2 \leftarrow 1, x_3 \leftarrow 1, x_4 \leftarrow 1, x_5 \leftarrow 1, x_6 \leftarrow 2\}
x_1 < x_5
x_3^2 < x_6
                                       \{x_1 \leftarrow 1, x_2 \leftarrow 1, x_3 \leftarrow 1, x_4 \leftarrow 1, x_5 \leftarrow 1, x_6 \leftarrow 3\}
 x_4 > x_6
x_5 \in \{1, 2\}
x_i \in \{1, 2, 3\}, i \neq 5
```

$$\begin{cases} x_{1} < x_{2} \\ x_{1} < x_{3} \\ x_{1} < x_{4} \\ x_{1} < x_{5} \end{cases} \qquad \{x_{1} \leftarrow 1, x_{2} \leftarrow 1, x_{3} \leftarrow 1, x_{4} \leftarrow 1, x_{5} \leftarrow 1, x_{6} \leftarrow 1\}$$

$$\begin{cases} x_{1} < x_{4} \\ x_{1} < x_{5} \\ x_{3}^{2} < x_{6} \\ x_{4} > x_{6} \\ x_{5} \in \{1, 2\} \\ x_{i} \in \{1, 2, 3\}, i \neq 5 \end{cases} \qquad \{x_{1} \leftarrow 1, x_{2} \leftarrow 1, x_{3} \leftarrow 1, x_{4} \leftarrow 1, x_{5} \leftarrow 1, x_{6} \leftarrow 2\}$$

Principe:

on étend progressivement une affectation consistante

- on étend progressivement une affectation consistante
- en cas d'échec, on change la valeur de la variable courante

- on étend progressivement une affectation consistante
- en cas d'échec, on change la valeur de la variable courante
- s'il n'y a plus de valeur, on revient sur la variable précédente

- on étend progressivement une affectation consistante
- en cas d'échec, on change la valeur de la variable courante
- s'il n'y a plus de valeur, on revient sur la variable précédente
- on réitère le procédé tant qu'on n'a pas trouvé une solution et qu'on n'a pas essayé toutes les possibilités

Principe:

- on étend progressivement une affectation consistante
- en cas d'échec, on change la valeur de la variable courante
- s'il n'y a plus de valeur, on revient sur la variable précédente
- on réitère le procédé tant qu'on n'a pas trouvé une solution et qu'on n'a pas essayé toutes les possibilités

Complexité : $O(md^n)$

```
\mathsf{BT}(\mathcal{A},V)
Si V = \emptyset Alors \mathcal{A} est une solution
Sinon
   Choisir x \in V
   d \leftarrow d_x
   TantQue d \neq \emptyset
          Choisir v dans d
          d \leftarrow d \setminus \{v\}
          Si A \cup \{x \leftarrow v\} est consistante
          Alors BT(A \cup \{x \leftarrow v\}, V \setminus \{x\})
           FinSi
   FinTantQue
FinSi
```

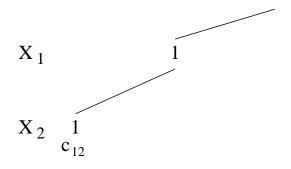
 X_1 1

 X_2

 X_3

 X_4

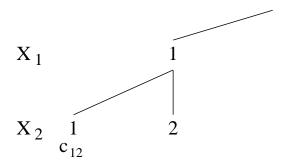
 X_5



 X_3

 X_4

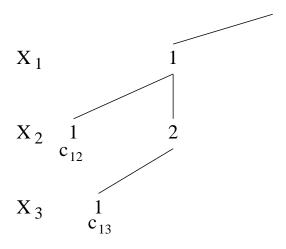
 X_5



 X_3

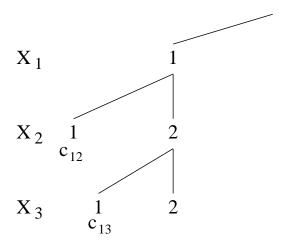
 X_4

 X_5



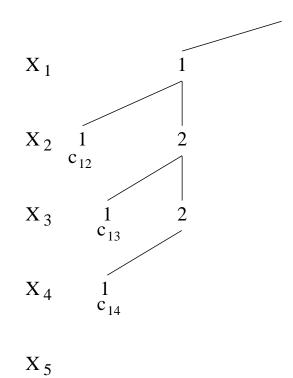
 X_4

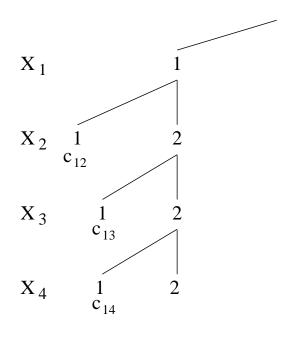
 X_5



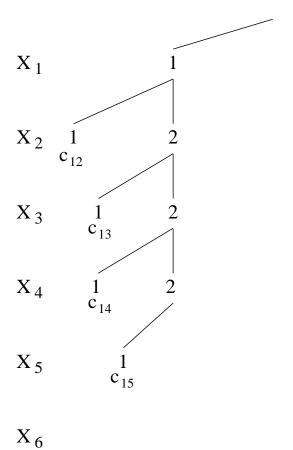
 X_4

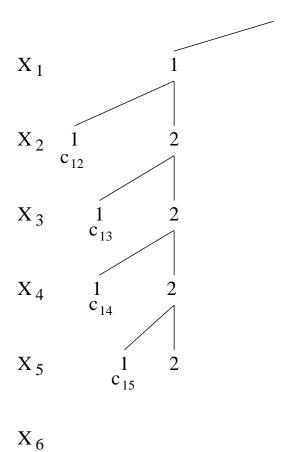
 X_5

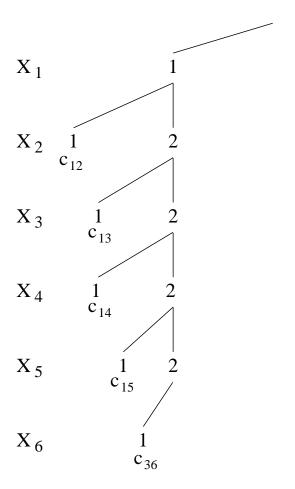


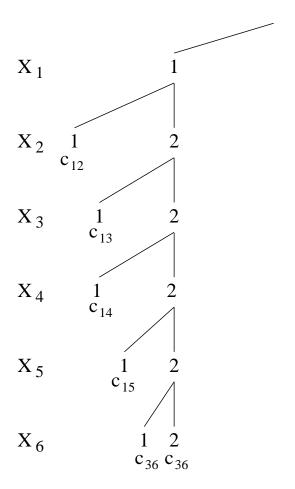


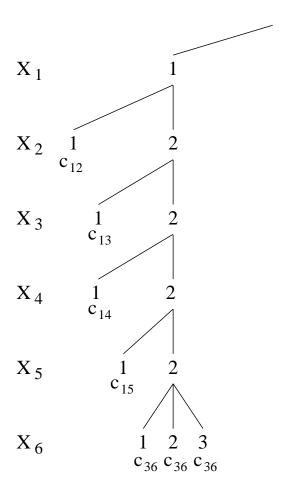
 X_5

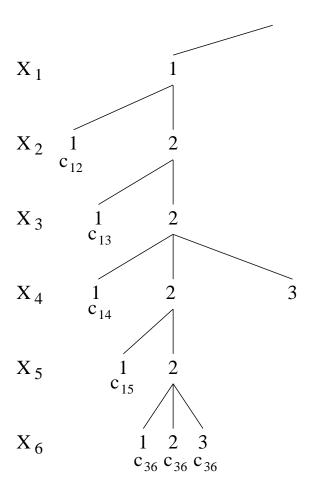


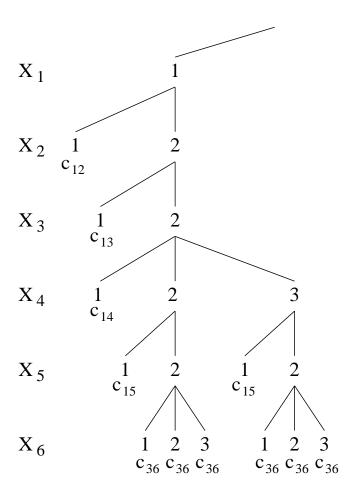


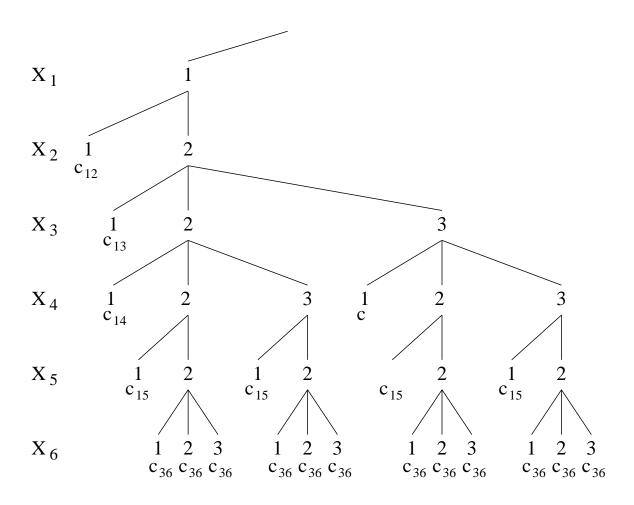


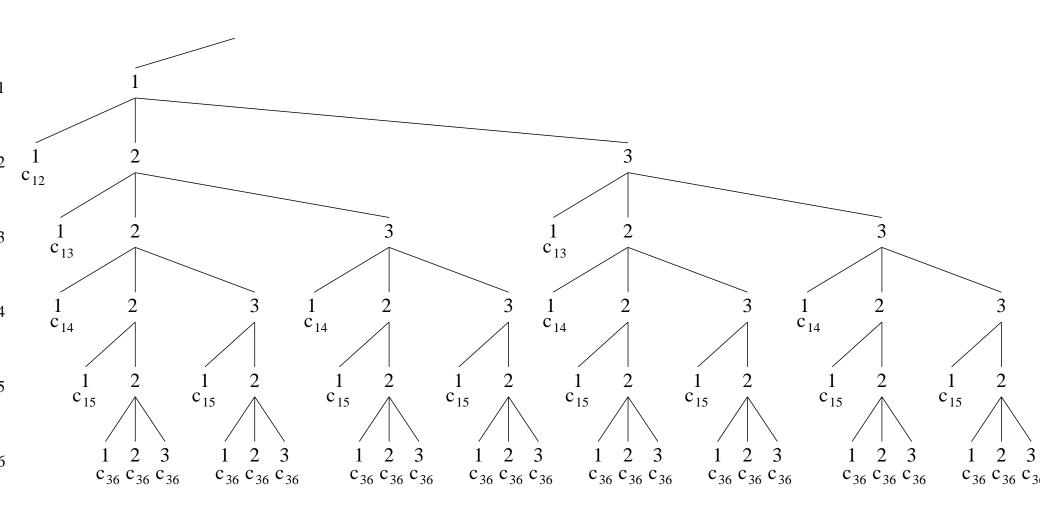












Améliorer Backtrack

Analyser les échecs

Améliorer Backtrack

- Analyser les échecs
- Mémoriser les échecs

Améliorer Backtrack

- Analyser les échecs
- Mémoriser les échecs
- Simplifier le problème

Backtrack : retour en arrière chronologique sur la variable précédente

Backtrack : retour en arrière chronologique sur la variable précédente

Principe:

identifier les causes de l'échec

Backtrack : retour en arrière chronologique sur la variable précédente

Principe:

- identifier les causes de l'échec
- modifier l'affectation d'une variable en cause dans l'échec

Backtrack : retour en arrière chronologique sur la variable précédente

Principe:

- identifier les causes de l'échec
- modifier l'affectation d'une variable en cause dans l'échec

Ce principe est appelé "retour arrière intelligent".

Soit *x* la variable courante

Cause d'un échec : une variable instanciée y telle que la contrainte $c=\{x,y\}$ soit violée

Soit *x* la variable courante

Cause d'un échec : une variable instanciée y telle que la contrainte $c = \{x, y\}$ soit violée

On ne considère que les échecs "immédiats"

Soit x la variable courante

Cause d'un échec : une variable instanciée y telle que la contrainte $c = \{x, y\}$ soit violée

On ne considère que les échecs "immédiats"

On revient sur la variable la plus profonde dans l'arbre de recherche qui soit en cause dans l'échec

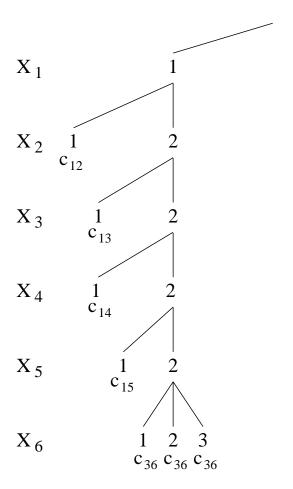
Soit *x* la variable courante

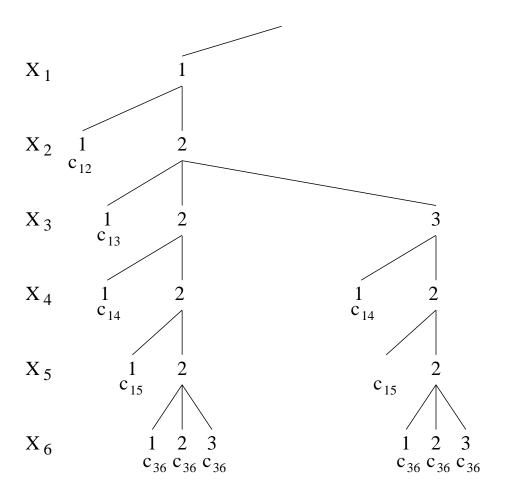
Cause d'un échec : une variable instanciée y telle que la contrainte $c = \{x, y\}$ soit violée

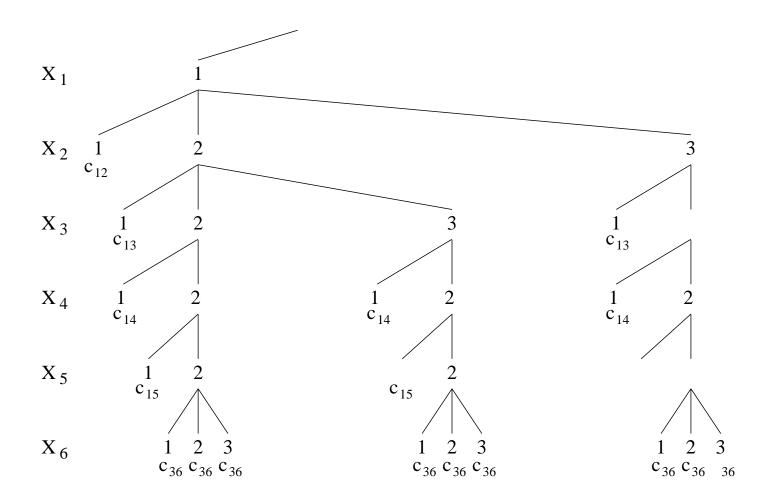
On ne considère que les échecs "immédiats"

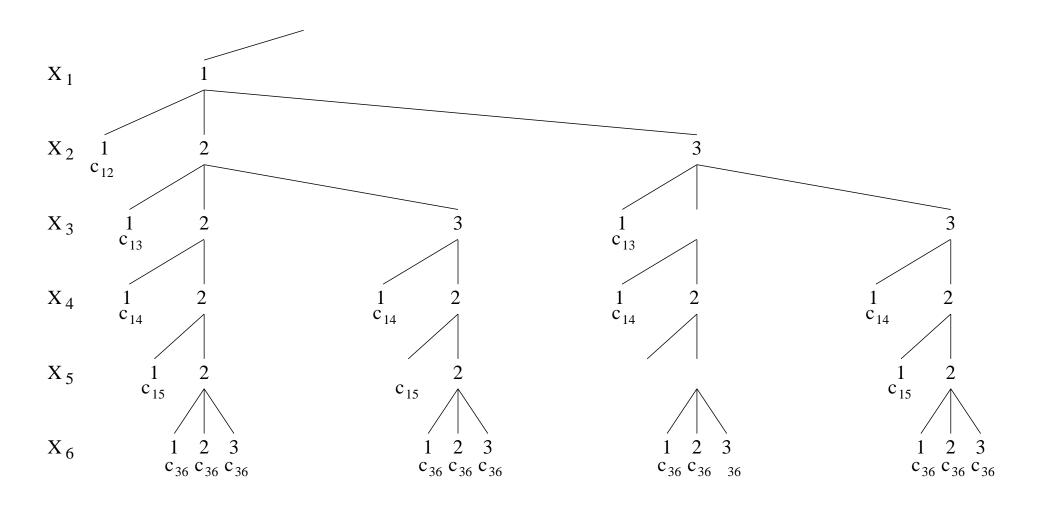
On revient sur la variable la plus profonde dans l'arbre de recherche qui soit en cause dans l'échec

Complexité : $O(md^n)$









Analyse d'après le graphe de contraintes

Analyse d'après le graphe de contraintes

Soit *x* la variable courante

Cause d'un échec : toute variable instanciée y telle qu'il existe une contrainte entre x et y

Analyse d'après le graphe de contraintes

Soit x la variable courante

Cause d'un échec : toute variable instanciée y telle qu'il existe une contrainte entre x et y

On revient sur la variable la plus profonde dans l'arbre de recherche qui soit en cause dans l'échec

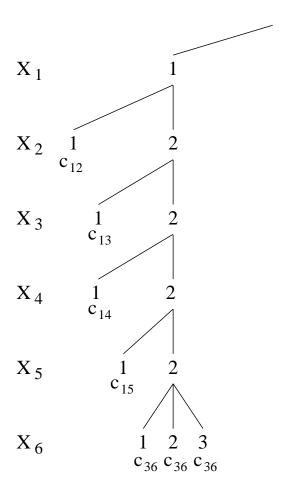
Analyse d'après le graphe de contraintes

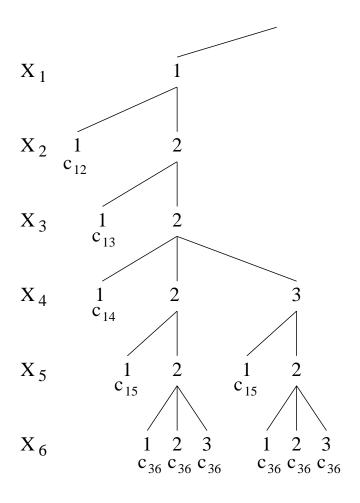
Soit *x* la variable courante

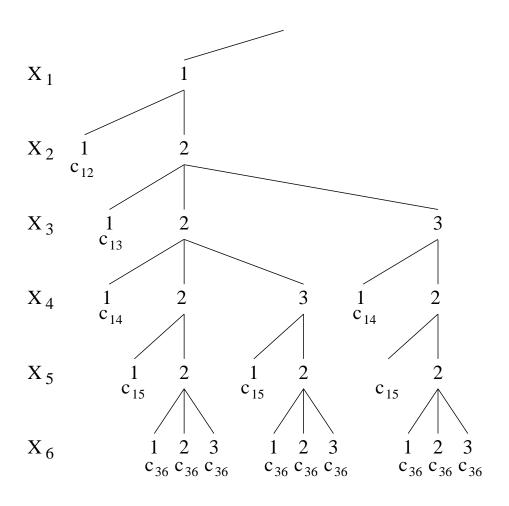
Cause d'un échec : toute variable instanciée y telle qu'il existe une contrainte entre x et y

On revient sur la variable la plus profonde dans l'arbre de recherche qui soit en cause dans l'échec

Complexité : $O(md^n)$







Analyse d'après les conflits effectivement rencontrés

Analyse d'après les conflits effectivement rencontrés

Soit *x* la variable courante

Cause d'un échec : une variable instanciée y telle que la contrainte $c = \{x, y\}$ soit violée

Analyse d'après les conflits effectivement rencontrés

Soit x la variable courante

Cause d'un échec : une variable instanciée y telle que la contrainte $c = \{x, y\}$ soit violée

On revient sur la variable la plus profonde dans l'arbre de recherche qui soit en cause dans l'échec

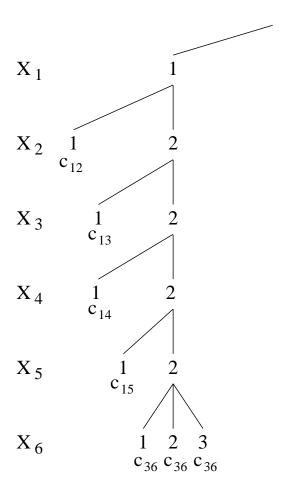
Analyse d'après les conflits effectivement rencontrés

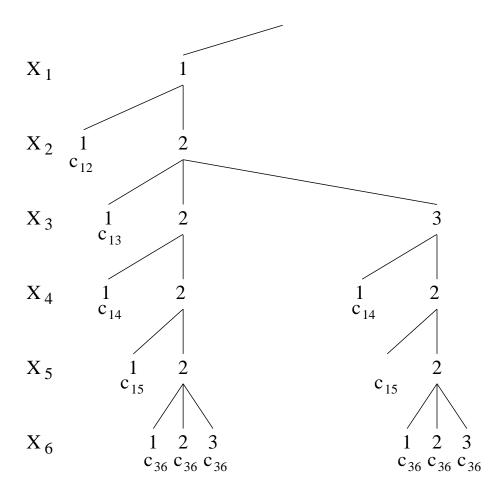
Soit *x* la variable courante

Cause d'un échec : une variable instanciée y telle que la contrainte $c = \{x, y\}$ soit violée

On revient sur la variable la plus profonde dans l'arbre de recherche qui soit en cause dans l'échec

Complexité : $O(md^n)$





Synthèse du backjumping

Avantages:

éviter certaines redondances dans la recherche

Synthèse du backjumping

Avantages:

- éviter certaines redondances dans la recherche
- des méthodes plus efficaces que BT

Synthèse du backjumping

Avantages:

- éviter certaines redondances dans la recherche
- des méthodes plus efficaces que BT

Inconvénient:

 un surcoût en temps pas toujours compensé par les économies réalisées

Echec = une information explicitée

Echec = une information explicitée

Objectif : éviter certaines redondances dans la recherche

Echec = une information explicitée

Objectif : éviter certaines redondances dans la recherche

Principe:

identifier les causes de l'échec

Echec = une information explicitée

Objectif : éviter certaines redondances dans la recherche

Principe:

- identifier les causes de l'échec
- mémoriser l'affectation des variables en cause dans l'échec comme une nouvelle contrainte

Avantage:

on évite certaines redondances

Mémoriser les échecs

Avantage:

on évite certaines redondances

Inconvénients:

 un surcoût en temps pas toujours compensé par les économies réalisées

Mémoriser les échecs

Avantage:

on évite certaines redondances

Inconvénients:

- un surcoût en temps pas toujours compensé par les économies réalisées
- le nombre d'échecs à mémoriser peut être exponentiel

Mémoriser les échecs

Avantage:

on évite certaines redondances

Inconvénients:

- un surcoût en temps pas toujours compensé par les économies réalisées
- le nombre d'échecs à mémoriser peut être exponentiel

En pratique, on limite la quantité d'informations mémorisées.

Nogood = un tuple interdit par une contrainte

Nogood = un tuple interdit par une contrainte

Principe:

identifier les causes de l'échec comme CBJ

Nogood = un tuple interdit par une contrainte

Principe:

- identifier les causes de l'échec comme CBJ
- mémoriser le nogood correspondant à l'affectation des variables en cause dans l'échec

Nogood = un tuple interdit par une contrainte

Principe:

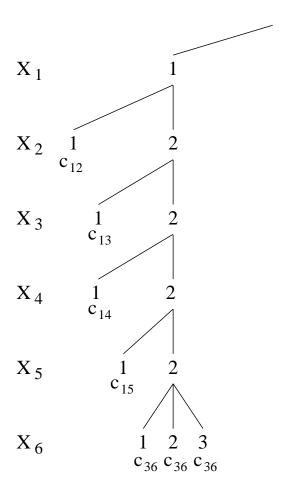
- identifier les causes de l'échec comme CBJ
- mémoriser le nogood correspondant à l'affectation des variables en cause dans l'échec
- utiliser la technique de backjumping de CBJ

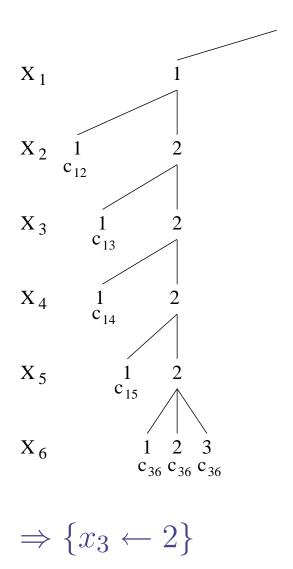
Nogood = un tuple interdit par une contrainte

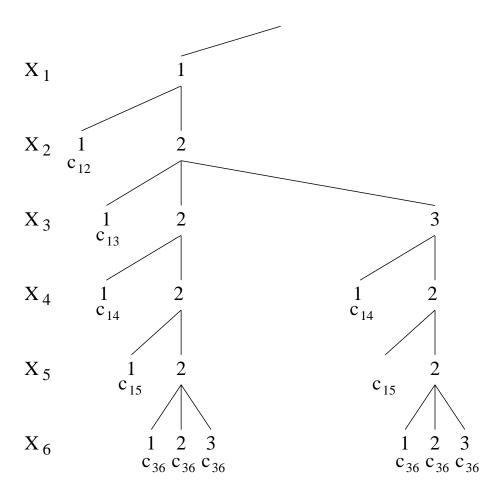
Principe:

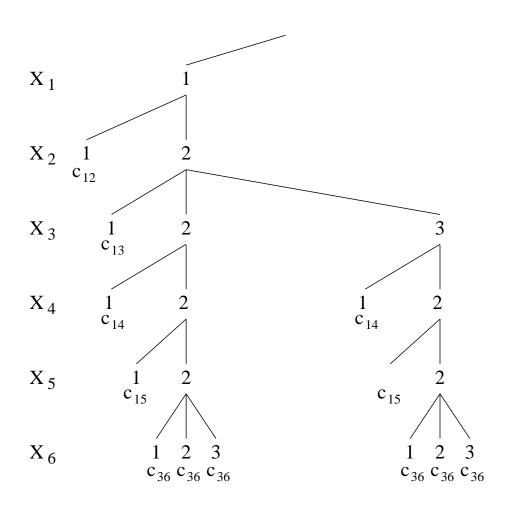
- identifier les causes de l'échec comme CBJ
- mémoriser le nogood correspondant à l'affectation des variables en cause dans l'échec
- utiliser la technique de backjumping de CBJ

En pratique, on limite la taille des nogoods à 2.









$$\Rightarrow \{x_3 \leftarrow 3\}$$

