CHAPITRE I

LOGIQUE ET ENSEMBLES

I.1. Logique

- Tableaux de vérité.
- Implication, équivalence.
- ET & OU.
- Négation:

$$Non[A OU B] \iff Non[A] ET Non[B].$$

 $Non[A ET B] \iff Non[A] OU Non[B].$

- Raisonnement par récurrence.
- Raisonnement par l'absurde :

$$[A \Rightarrow B] \Longleftrightarrow [NON[B] \Rightarrow NON[A]].$$

Tableau résumé.

A	В	NON[A]	NON[B]	A ET B	A OU B	$A \Rightarrow B$	$B \Rightarrow A$	$A \Leftrightarrow B$
V	V	F	F	V	V	V	V	V
V	F	F	V	F	V	F	V	F
F	V	V	F	F	V	V	F	F
F	F	V	V	F	F	V	V	V

I.2. Parties d'une ensemble

Appartenance, inclusion.

Une partie A d'un ensemble E est définie par la relation d'appartenance :

$$x \in A$$
.

On note $\mathcal{P}(E)$ l'ensemble des parties de E. Il y a une relation d'inclusion entre les parties de E (qu'on peut considérer comme une relation d'ordre sur l'ensemble $\mathcal{P}(E)$) :

$$A \subseteq B \iff [x \in A \Rightarrow x \in B]$$

Remarque 1. C'est l'inclusion au sens large : on n'exclut pas A=B. D'ailleurs on a

$$[A \subseteq B] \text{ ET } [B \subseteq A] \iff A = B.$$

Si A est contenue dans B et $A \neq B$, on a l'inclusion au sens strict : $A \subseteq B$).

La partie \emptyset (telle que $\forall x, x \notin \emptyset$) est la plus petite de toutes les parties, la partie E (telle que $\forall x, x \in E$) est la plus grande de toutes.

Union, intersection, complémentaire.

- Union d'une famille $(A_i)_{i\in I}$ de parties d'un ensemble E:

$$\bigcup_{i \in I} A_i = \{ x \in E \mid \exists i \in I, x \in A_i \}.$$

- Intersection d'une famille $(A_i)_{i\in I}$ de parties d'un ensemble E:

$$\bigcap_{i \in I} A_i = \{ x \in E \mid \forall i \in I, x \in A_i \}.$$

- Complémentaire d'une partie A de E:

$$CA = \{x \in E \mid x \notin A\}.$$

Proposition 2. On a:

- $\mathbb{C}(\bigcup_{i \in I} A_i) = \bigcap_{i \in I} \mathbb{C}A_i$ $\mathbb{C}(\bigcap_{i \in I} A_i) = \bigcup_{i \in I} \mathbb{C}A_i$

I.3. Applications

Soient E et F deux ensembles. Une application f de E dans F fait correspondre à tout $x \in E$ un et un seul élément y = f(x) de F (y est l'image de x par f). On note

$$f: E \mapsto F$$
.

Exemple : l'application identique $id_E : E \mapsto E$ qui à tout $x \in E$ associe x, soit $id_E(x) = x$.

DÉFINITION 3. Soit $f: E \mapsto F$.

 \bullet On dit que f est injective ou que f est une injection si

$$f(x) = f(x') \Rightarrow x = x'.$$

 \bullet On dit que f est surjective ou que f est une surjection si

$$\forall y \in F, \exists x \in E, f(x) = y.$$

 \bullet On dit que f est bijective ou que f est une bijection si elle est à la fois injective et surjective.

Application réciproque.

Si $f: E \mapsto F$ est bijective, à tout $y \in F$ correspond un élément et un seul $x \in E$ tel que f(x) = y. On définit ainsi une application de F dans E. C'est l'application réciproque de f. On la note f^{-1} . On a

$$y = f(x) \Longleftrightarrow x = f^{-1}(y).$$

Ainsi f et f^{-1} sont réciproques l'une de l'autre : $(f^{-1})^{-1} = f$.

3

Application composée.

Soient $f: E \mapsto F$, et $g: F \mapsto G$, deux applications (l'ensemble d'arrivée de la première est l'ensemble de départ de la seconde). On appelle application composée de f et de g on note $g \circ f$, l'application $g \circ f : E \mapsto G$, telle que

$$g \circ f(x) = g(f(x)).$$

Proposition 4. Soit $f: E \mapsto F$ une application bijective. Alors f et la bijection réciproque f^{-1} sont liées par les relations

$$f \circ f^{-1} = id_F, \quad f^{-1} \circ f = id_E.$$

Image directe.

DÉFINITION 5. Soient $f: E \mapsto F$ une application et A une partie de E. On appelle image directe de A par f, on note f(A), la partie de F définie

$$f(A) = \{ y \in F \mid \exists x \in A, f(x) = y \}.$$

Remarque 6. Ainsi f est surjective si et seulement si f(E) = F.

Proposition 7. Soit $f: E \mapsto F$ une application.

- Si A et B sont deux parties de E telles que $A \subseteq B$, alors $f(A) \subseteq f(B)$.
- Soit $(A_i)_{i \in I}$ famille de parties de E, alors
 - $-f(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} f(A_i),$ $-f(\bigcap_{i\in I} A_i) \subseteq \bigcap_{i\in I} f(A_i),$

REMARQUE 8. On a l'égalité $f(\bigcap_{i\in I} A_i) = \bigcap_{i\in I} f(A_i)$ pour toute famille $(A_i)_{i\in I}$ si et seulement si f est injective.