M5/ T.D. N°5

- 1/ Pour quelles valeurs de m, n, m' et n' peut-on donner un isomorphisme (= une bijection qui préserve l'addition et la multiplication scalaire) entre les espaces vectoriels $\mathbf{M}_{m \times n}(K)$ et $\mathbf{M}_{n\iota'\times n'}(K)$?
- 2/ Sachant que l'ensemble noté \mathbb{R}^S des applications d'un ensemble S dans \mathbb{R} est naturellement muni d'une structure d'espace vectoriel, les parties suivantes de \mathbf{R}^S sont-elles des sous-espaces vectoriels?

 - $\{f \in \mathbf{R}^{\mathbf{R}} \mid f \text{ continue en } x_0\}, \text{ pour } x_0 \in \mathbf{R} \text{ domné} \quad \forall$
 - d/ $\{(a_0,a_1,a_2)\in \mathbf{R}^3=\mathbf{R}^{\{0,1,2\}}\ |\ a_0+a_1-2a_2=x\},$ pour $x\in \mathbf{R}$ donné
 - $\mathbf{R}[X] = \{ a \in \mathbf{R}^{\mathbf{N}} \mid a^{-1}(\mathbf{N} \{0\}) \text{ est fini} \}$
- 3/ Soit E un espace vectoriel sur le corps K, et soient E_1 et E_2 deux sous-espaces vectoriels de E. Montrer que :
 - a/ $[E_1 \cup E_2 \text{ est un sous-espace vectoriel de } E] \longleftrightarrow [E_1 \subset E_2 \text{ ou } E_2 \subset E_1].$
 - b/ Le complément de E_1 dans E n'est pas un sous-espace vectoriel de E.
- 4/ Démontrer les énoncés 3.2 (a) (d) et 3.5 (1) (5) du cours.
- 5 Dans \mathbb{R}^3 , démontrer que le sous-espace engendré par a et b d'une part et le sous-espace engendré par c et d d'autre part sont identiques. Déterminer leur dimension puis compléter $\{a,b\}$ pour obtenir une base de \mathbb{R}^3 .

$$a = (2, 3, -1)$$
, $b = (1, -1, -2)$, $c = (3, 7, 0)$, $d = (5, 0, -7)$.

6/ Mêmes questions dans \mathbf{R}^4 avec

$$a = (2, 3, -1, 0)$$
, $b = (-3, 1, 0, 2)$, $c = (-4, 5, -1, 4)$ $d = (9, 8, -3, -2)$.

7/ Soit E un espace vectoriel de dimension 4 sur \mathbf{R} . $\varepsilon = \{e_1, e_2, e_3, e_4\}$, une base de E, et pour $\alpha, \beta \in \mathbf{R}$:

$$\begin{aligned} v_1 &= e_1 + 2e_2 + \alpha e_3 + e_4, \\ v_2 &= \alpha e_1 + e_2 + 2e_3 + 3e_4, \\ v_3 &= e_2 + \beta e_3. \end{aligned}$$

Déterminer α et β afin que v_1, v_2, v_3 soient linéairement dépendants.

- 8/ Montrer que l'ensemble des applications continues de \mathbf{R} dans \mathbf{R} , noté $C(\mathbf{R}; \mathbf{R})$, est un sous-espace vectoriel de $\mathbf{R}^{\mathbf{R}}$, dans lequel on étudiera l'indépendance linéaire de la partie $\{\sinh, \cosh, \exp\}$.
- 9/ Soit F le sous-ensemble de l'espace vectoriel des suites réelles $\mathbb{R}^{\mathbb{N}}$, donné par:

$$F = \left\{ (u_n) \in \mathbf{R}^{\mathbf{N}} \mid u_{n+2} = 2u_{n+1} + 3u_n \quad \forall \ n \in \mathbf{N} \right\}$$

- a/ Montrer que F est un sous-espace vectoriel de $\mathbf{R}^{\mathbf{N}}$.
- b/ Déterminer une base de F.

10/ Soit
$$E = \left\{ (x, y, z, t) \in \mathbf{R}^4 \mid 2y = x \text{ et } y + 3z + 2t = 0 \right\}.$$

- a/ Moutrer que E est un sous-espace vectoriel de \mathbb{R}^4 .
- b/ Trouver une base de E, que l'on complètera en une base de ${\bf R}^4$.

Soit
$$\mathbf{F} = \Big\{ (x,y,z,t) \in \mathbf{R}^4 \ | \ x+z=y+t \Big\}.$$

- c/ Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 .
- d/ Trouver une base de F.
- e/E est-il un sous-espace vectoriel de F?
- f/ Déterminer $E \cap F$ et en donner une base.