Université Paul Cézanne - Licence de math-info 2^e année I5: Examen (1h30, sans document, sans calculatrice)

Exercice 1 (7 points)

Soit $\Sigma = \{a, b\}$ et L l'ensemble de tous les mots de longueur impaire de Σ^* .

- a. Donnez une expression régulière représentant le langage L.
- b. Déterminez un automate fini déterministe qui reconnaît L. On donnera sa table de transition. Montrez que votre automate accepte tous les mots de longueur impaire de Σ^* et qu'il n'accepte aucun mot de longueur paire. Conseil: on pourra utiliser un raisonnement par récurrence sur la longueur des mots.
- c. Déterminez une grammaire formelle qui engendre L. Montrez que votre grammaire génère tous les mots de longueur impaire de Σ^* et qu'elle ne génère aucun mot de longueur paire.

Exercice 2 (6 points)

On appelle A l'automate non-déterministe avec ϵ -transition dont la table de transition est :

	a	b	ϵ
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	$\{q_1\}$
q_1	$\{q_2, q_3\}$	Ø	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
$*q_3$	Ø	$\{q_3\}$	$\{q_0\}$

- a. Transformez A en un automate équivalent A' déterministe et sans ϵ -transition. On écrira la table de transition de A'.
- **b.** Déterminez l'expression régulière représentant le langage reconnu par l'automate A. Pour ceci, on partira de l'automate A et on utilisera la méthode par élimination d'état.
- c. Déterminez une grammaire régulière linéaire à droite engendrant le langage reconnu par A.

Exercice 3 (7 points)

Soit le langage $L = \{(ab)^n (ba)^n \mid n > 0\}$. (Ce langage contient les mots abba, ababbaba, ababbaba, etc)

- **a.** Montrez que L n'est pas un langage régulier. On pourra utiliser le lemme du facteur itérant : Pour tout langage régulier L, il existe une constante n (dépendant de L) telle que pour tout mot w de L de longueur supérieure ou égale à n, il existe les mots x, y et z tels que (1) w = x.y.z, (2) $y \neq \epsilon$, (3) $|x.y| \leq n$ et (4) $\forall k \geq 0$: $x.y^k.z \in L$.
- **b.** Définissez une machine de Turing reconnaissant le langage L. Justifiez votre machine de Turing en expliquant pourquoi elle accepte tous les mots de ce langage et uniquement ceux-ci.