Trois heures, documents et calculatrices interdits.

Exercice I. (Cours, 6 points)

- 1. Enoncer et démontrer le théorème des restes chinois.
- 2. Montrer que \mathbb{Z} est un anneau principal.

Exercice II. On se place dans $\mathbb{Z}/18\mathbb{Z}$.

- 1. a. Calculer l'inverse de 7.
- **b.** Résoudre l'équation 5x + 3 = 0.
- **c.** Résoudre l'équation 4x + 10 = 0.
- **2.** a. Montrer que l'application $f: x \mapsto 7x + 3$ est bijective.
- **b.** Trouver tous les x tels que f(x) = x.
- 3. Donner le cardinal du groupe multiplicatif $(\mathbb{Z}/18\mathbb{Z})^{\times}$.
- **4. a.** Calculer 5^2 , 5^3 et 5^6 .
- **b.** En déduire l'ordre de 5 dans le groupe multiplicatif $(\mathbb{Z}/18\mathbb{Z})^{\times}$.
- **5.** Donner explicitement un isomorphisme entre $(\mathbb{Z}/6\mathbb{Z}, +, 0)$ et $((\mathbb{Z}/18\mathbb{Z})^{\times}, \times, 1)$.

Exercice III. Dans S_4 on considère les éléments $\alpha = (12)(34)$ et $\beta = (13)(24)$, et N le sous-groupe qu'ils engendrent.

- 1. Déterminer les quatre éléments de N et dresser sa table de CAYLEY. Montrer que les éléments de N commutent.
- 2. Montrer que tous les éléments de N sont pairs et qu'ils sont d'ordre 1 ou 2.
- 3. Donner tous les éléments de S_4 qui sont pairs et d'ordre 1 ou 2.
- **4.** Soit $\rho, \sigma \in S_4$, montrer que $\sigma \rho \sigma^{-1}$ et ρ ont même ordre
- 5. Soit $\rho, \sigma \in S_4$, montrer que $\sigma \rho \sigma^{-1}$ et ρ ont même signature.
- **6.** En déduire que pour $\sigma \in S_4$ et $\rho \in N$, $\sigma \rho \sigma^{-1} \in N$.
- 7. Déterminer une permutation $\sigma \in S_4$ telle que $\sigma \alpha \sigma^{-1} = \beta$ et $\sigma \beta \sigma^{-1} = \alpha$

Exercice IV. Soit G un groupe commutatif et x et y des éléments de G d'ordres finis respectifs m et n.

- 1. Donner la définition de l'ordre de x.
- **2.** a. Soit d un diviseur de m déterminer l'ordre de x^d dans G.
- **b.** Pour $a \in \mathbb{Z}$, donner l'ordre de x^a en fonction de m et pgcd(a, m).
- c. Soit d un diviseur de m, donner un élément de G d'ordre d.
- **3.** a. Montrer que si m et n sont premiers entre eux et si m et n divisent $a \in \mathbb{Z}$ alors mn divise a.
- **b.** Si m et n sont premiers entre eux montrer que l'ordre de z = xy est mn.

- **4.** Soit $m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ et $n = p_1^{\beta_1} \cdots p_r^{\beta_r}$ les décompositions en facteurs premiers de m et n, où p_1, \ldots, p_r sont des nombres premiers deux à deux distincts et $\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_r \ge 0$ sont des entiers positifs.
- a. Donner la décomposition en facteurs premiers du pgcd et du ppcm de m et n.
- **b.** Montrer que pour chaque i il existe un élément z_i de G d'ordre $p_i^{\max(\alpha_i,\beta_i)}$.
- **c.** Donner l'ordre de $z = z_1 \cdots z_r$.